The Impact of Machine Learning on Economics

Susan Athey, Stanford University

Machine Learning

Supervised ML

- Outcomes Y
- Features X
- Independent obs.
- Goal: Use X to predict Y on an independent test set

$$\hat{\mu}(x) = E[Y|X = x]$$

Unsupervised ML

- Features X
- Goals:
 - Clustering
 - Dimensionality Reduction
- "I discovered cats!"

I discovered Town and Country!

cluster	location	city
17	palo alto high school	palo alto
17	trader joe's (el camino real)	palo alto
17	calafia cafe	palo alto
17	mayfield bakery & cafe	palo alto
17	gotts roadside	palo alto
17	whole foods market (emerson street)	palo alto
17	philz coffee (forest ave.)	palo alto
17	bloomingdale's	palo alto
17	apple retail store (university avenue)	palo alto
17	foothills tennis & swimming club	palo alto
17	lytton gardens community housing	palo alto
17	nest labs	palo alto
17	tin pot creamery (el camino real)	palo alto
17	palo alto clay and glass festival	palo alto
17	blue bottle coffee	palo alto
17	kirks steakburgers	palo alto
17	orens hummus shop (university ave)	palo alto
17	pediatric dentistry of palo alto	palo alto
17	douce france cafe & bakery	palo alto
17	cvs (el camino real)	palo alto
17	nob hill foods (grant road)	mountain view
17	peets coffee (el camino real)	palo alto

Predictions for Economics

- Adoption of off-the-shelf ML methods for their intended tasks (prediction, classification, and clustering, e.g. for textual analysis)
- Extensions and modifications of prediction methods to account for considerations such as fairness, manipulability, and interpretability
- Development of new econometric methods based on machine learning designed to solve traditional social science estimation tasks, e.g. causal inference
- Increased emphasis on model robustness and other supplementary analysis to assess credibility of studies
- Adoption of new methods by empiricists at large scale
- Revival and new lines of research in productivity and measurement

- New methods for the design and analysis of large administrative data, including merging these sources
- Increase in interdisciplinary research
- Changes in organization, dissemination, and funding of economic research
- "Economist as engineer" engages with firms, government to design and implement policies in digital environment
- Design and implementation of digital experimentation, both one-time and as an ongoing process, in collaboration with firms and government
- Increased use of data analysis in all levels of economics teaching; increase in interdisciplinary data science programs
- Research on the impact of AI and ML on economy

What Are Unique Features of Cross-Sectional Econometrics v. Other Branches of Statistics?

- Framework and language for causality
- Causal inference from observational data
 - Theory and PRACTICE
- Structural models to do counterfactuals for environments that have never been observed
- ▶ Emphasis on interpretable (~causal) models
- Relatively little emphasis on systematic model selection in applied micro-econometrics
 - Even in environments where theory does not motivate functional forms
- Emphasis on standard errors for a pre-specified models
 - Estimators must have established properties

What We Say v. What We Do (Econometrics)

What We Say

- Causal inference and counterfactuals
- God gave us the model
- We report estimated causal effects and appropriate standard errors
- Plus a few additional specifications for robustness

What we do

- Run OLS or IV regressions
 - ▶ Try a lot of functional forms
 - Report standard errors as if we ran only one model
 - Have research assistants run hundreds of regressions and pick a few "representative" ones
- Use complex structural models
 - Make a lot of assumptions without a great way to test them

Some Broad Generalizations About ML Versus Cross-Sectional Econometrics

Guiding principle: prediction

- Training, testing
- Big concern: overfitting with small data
- Also: underfitting with large data

Counterfactuals: within current "regime"

- If joint distribution among variables changes, just retrain your model
- Many argue that predicting for a new stochastic process not justified

Some key features

- Quality of a predictive algorithm can be summarized in a single number per observation
- Can assess performance in a model-free way

Relatively small ML literature on causality

- "graphical" representations of causal relationships (Judea Pearl)
- Reinforcement learning & bandit problems
- Little empirical work outside of randomized experiments, no IV or IV analog
- If model predicts well in current regime, what more do you need?
- Relatively little emphasis on statistical properties of estimators or interpretability of models
- Not historically an empirical field—not about measurement/estimation or about the numbers

What We Say v. What We Do (ML)

- What we say
 - ML = Data Science, statistics
 - Is there anything else?
 - Use language of answering questions or solving problems, e.g. advertising allocation, salesperson prioritization
 - Aesthetic: human analyst does not have to make any choices
 - All that matters is prediction

What we do

- Use predictive models and ignore other considerations, e.g. causality
- Wonder/worry about interpretability/reliability/ro bustness/adaptability, but have little way to conceptualize or ask algos to optimize for it

Some Lessons for Econometrics: More Emphasis on Validation

- Model "validation" essential in ML but often neglected in econometrics
 - To be fair, we are asking harder counterfactual questions
 - We are using models less prone to "overfitting"
- Examples in econometrics
 - Fitting moments that weren't used for estimation
 - Testing assumptions of structural models
 - Meta-studies of merger predictions v. outcomes
 - Athey/Levin/Seira (QJE), Athey-Coey-Levin (AEJ:Micro) on timber where we estimate on sealed-bid, unrestricted sales and predict to open ascending or small business

Some Lessons for Econometrics: More Emphasis on Model Selection

- We don't really pick specifications in advance, but we don't emphasize our selection procedures
 - For larger datasets, really need systematic model selection
 - Regularized regression, etc.
 - Robustness
 - Athey and Imbens, 2015—standard deviation of estimates across models
 - Supplementary Analysis
 - ▶ See Athey and Imbens 2017 (JEP) for a review
 - ▶ Athey, Imbens, Pham and Wager (2017), etc.
- Need methods palatable and interpretable for applied research, valid standard errors

ML and Causal Inference: Average Treatment Effects Under Unconfoundedness

- Focusing on prediction only leads to bias
 - To remove bias, control for confounders
 - Focusing on prediction "zero's out" confounders with weak effect on outcomes
 - Belloni, Chernozukov, and Hansen (series of papers)
 - Use LASSO as a variable selection method
 - Y on X
 - W on X
 - OLS of Y on W, selected X
 - Early example to show that Prediction and ML should have different objectives!

- Estimating propensity scores/assignment model neither necessary or a good idea
 - Assignment models often complex
 - Hard to estimate accurately in high dimensions
 - Focus directly on covariate balance
 - Athey, Imbens and Wager (2016) method does not rely on estimable propensity score
- Orthogonalization helps
 - Both BCH and AIW approaches rely on residualization
 - Hard to estimate high-dimensional models accurately
- Residual on Residual regression using ML Chernozhukov et al (2017)

Difference in Difference, Panel Data

- Doudchenko and Imbens (2017)
 - Regularized regression for Synthetic Control
- Athey, Bayati, Doudchenko, Imbens, Khosravi (2017)
 - Fit a matrix to panel data with penalization for "complexity"
 - Find general cross-sectional and time series patterns
 - Works with "wide" or "narrow" data
 - Observation: estimating what would have happened in the absence of the treatment is a prediction problem

Heterogeneous Treatment Effects: Experiments, Unconfoundedness, IV, GMM

- Estimating heterogeneity with limited complexity
 - Causal Tree (Athey and Imbens, PNAS 2016)
 - Tailored objective, std errors
 - Sample splitting
 - Many applications from health to field experiments
 - Trees with GMM/ML Models
 - > Zeiles (2008)
 - Asher, Nekipelov, Novosad, Ryan (2016)
 - ▶ Athey, Tibshirani, and Wager (2016)
 - LASSO
 - "Interpretability"? Arguably harder than trees when omitted variables.
 - ▶ E.g. Imai and Ratkovic, 2013
 - "Deep IV"
 - Matt Taddy, Greg Lewis et al (2017)

- Non-parametric estimation
 - $\hat{\tau}(x) = E[\tau_i | X_i = x]$
 - ▶ This is a hard problem!
 - Forest-based methods
 - Wager and Athey (2015) provide first asymptotic normality results, confidence intervals
 - Athey, Tibshirani, and Wager (2016)
 any GMM model, e.g. IV, with confidence intervals
 - Use forests to generate weights
 - Forests replace kernels wherever they are used
 - "Deep IV"
 - Matt Taddy, Greg Lewis et al (2017)

Optimal Policy Estimation

- ▶ E.g. personalized medicine
- A variety of approaches from ML literature
 - Imports ideas from causal inference literature such as propensity score weighting
 - Little attention to econometric efficiency
- Kitagawa and Tetenov (forthcoming, EMA)
- Athey and Wager (2017)
 - Improve the performance bringing in orthogonalization and ideas from econometric efficiency
- Bandits & Contextual Bandits
 - Steve Scott (Google)
 - John Langford team (MSR)
 - Eytan Bakshy team (Facebook)
 - Athey et al (methods & applications in progress... stay tuned)

Some Lessons for Econometrics: Large Scale Bayesian Models

- ML & Econometrics closest when we do Bayesian statistics
- ML has well-developed literature on large scale
- Athey-Nekipelov (2014) advertisers with heterogeneous preferences in search
- David Blei et al techniques
- Use matrix factorization for consumer demand systems with aggregated (Taddy et al 2017) or individual discrete choice (Athey et al (2017))