Artificial Intelligence and Economic Growth

Philippe Aghion (College de France & LSE)
Benjamin Jones (Northwestern University and NBER)
Charles I. Jones (Stanford GSB and NBER)

Toronto, September 2017

What are the implications of A.I. for economic growth?

- Build some growth models with A.I.
 - A.I. helps to make goods
 - A.I. helps to make ideas
- Implications
 - Long-run growth
 - Share of GDP paid to labor vs capital
 - Firms and organizations
- Singularity?

Two Main Themes

- A.I. modeled as a continuation of automation
 - Automation = replace labor in particular tasks with machines and algorithms
 - Past: textile looms, steam engines, electric power, computers
 - Future: driverless cars, paralegals, pathologists, maybe researchers, maybe everyone?
- A.I. may be limited by Baumol's cost disease
 - Baumol: growth constrained not by what we do well but rather by what is essential and yet hard to improve

Simple Model of Automation (Zeira 1998)

Production uses n tasks:

$$Y = AX_1^{\alpha_1}X_2^{\alpha_2} \cdot \ldots \cdot X_n^{\alpha_n},$$

where
$$\sum_{i=1}^{n} \alpha_i = 1$$
 and

$$X_{it} = egin{cases} L_{it} & ext{if not automated} \\ K_{it} & ext{if automated} \end{cases}$$

Substituting gives

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

- Comments:
 - \circ α reflects the *fraction* of tasks that are automated
 - Embed in neoclassical growth model ⇒

$$g_y = \frac{g_A}{1 - \alpha}$$
 where $y_t \equiv Y_t / L_t$

- Automation: $\uparrow \alpha$ raises both capital share and LR growth
 - Hard to reconcile with 20th century
 - Substantial automation but stable growth and capital shares

Subsequent Work

- Acemoglu and Restrepo (2017)
 - Old tasks are gradually automated as new (labor) tasks are created
 - Fraction automated can then be steady
 - Rich framework, with endogenous innovation and automation
- Peretto and Seater (2013), Hemous and Olson (2016), Agrawal, McHale, and Oettl (2017)

Baumol's Cost Disease and the Kaldor Facts

- Baumol: Agriculture and manufacturing have rapid growth and declining shares of GDP
 - ... but also rising automation
- Aggregate capital share could reflect a balance
 - Rises within agriculture and manufacturing
 - But falls as these sectors decline
- Maybe this is a general feature of the economy!
 - o First agriculture, then manufacturing, then services

Model

Production is CES in tasks, with EofS<1 (complements)

$$Y_t = A_t \left(\int_0^1 X_{it}^
ho \, di
ight)^{1/
ho}$$
 where $ho < 0$ (Baumol)

• Let β_t = fraction of tasks automated by date t:

$$\begin{split} Y_t &= A_t \left[\beta_t \left(\frac{K_t}{\beta_t}\right)^\rho + (1-\beta_t) \left(\frac{L}{1-\beta_t}\right)^\rho\right]^{1/\rho} \\ &\implies Y_t = A_t \left((B_t K_t)^\rho + (C_t L)^\rho\right)^{1/\rho} \end{split}$$
 where $B_t = \beta_t^{\frac{1}{\rho}-1}$ and $C_t = (1-\beta_t)^{\frac{1}{\rho}-1}$

• Note: increased automation $\Rightarrow \downarrow B_t$ and $\uparrow C_t$ since $\rho < 0$. (e.g. a given amount of capital is spread over more tasks.)

Factor Shares of Income

Ratio of capital share to labor share:

$$\frac{\alpha_{K_t}}{\alpha_{L_t}} = \left(\frac{\beta_t}{1 - \beta_t}\right)^{1 - \rho} \left(\frac{K_t}{L_t}\right)^{\rho}$$

- Two offsetting effects ($\rho < 0$):
 - $\circ \uparrow \beta_t$ raises the capital share
 - ∘ $\uparrow K_t/L_t$ lowers the capital share

If these balance, constant factor shares are possible

Automation and Asymptotic Balanced Growth

 Suppose a constant fraction of non-automated tasks become automated each period:

$$\dot{\beta}_t = \theta(1 - \beta_t)$$

Then $\beta_t \to 1$ and C_t grows at a constant rate!

- With $Y_t = F(B_tK_t, C_tL_t)$, balanced growth as $t \to \infty$:
 - All tasks eventually become automated
 - Labor still gets 2/3 of GDP! Vanishing share of tasks, but all else is cheap (Baumol)
 - o Agr/Mfg shrink as a share of the economy...

Simulation: Automation and Asymptotic Balanced Growth

Simulation: Capital Share and Automation Fraction

Al, Organizations, and Wage Inequality

- Usual story: robots replace low-skill labor, hence
 † skill premium (e.g., Krusell et al. 2000)
- But solving future problems, incl. advancing AI, might be increasingly hard, suggesting

 complementarities across workers,

 teamwork, and changing firm boundaries (Garicano 2000, Jones 2009)
- Aghion et al. (2017) find evidence along these lines
 - outsouce higher fraction of low-skill workers
 - pay increased premium to low-skill workers kept

Al, Organizations, and Wage Inequality

Al in the Ideas Production Function

- Let production of goods and services be $Y_t = A_t L_t$
- Let idea production be:

$$\dot{A}_t = A_t^{\phi} \left(\int_0^1 X_{it}^{\rho} di \right)^{1/\rho}, \ \rho < 0$$

• Assume fraction β_t of tasks are automated by date t. Then:

$$\dot{A}_t = A_t^{\phi} F(B_t K_t, C_t S_t)$$

where

$$B_t \equiv \beta_t^{\frac{1-\rho}{\rho}}; C_t \equiv (1-\beta_t)^{\frac{1-\rho}{\rho}}$$

This is like before...

Al in the Ideas Production Function

• Intuition: with $\rho < 0$ the scarce factor comes to dominate

$$F(B_tK_t, C_tS_t) = C_tS_tF\left(\frac{B_tK_t}{C_tS_t}, 1\right) \to C_tS_t$$

So, with continuous automation

$$\dot{A}_t \to A_t^{\phi} C_t S_t$$

And asymptotic balanced growth path becomes

$$g_A = \frac{g_C + g_S}{1 - \phi}$$

We get a "boost" from continued automation (g_C)

Singularities

- Now we become more radical and consider what happens when we go "all the way" and allow AI to take over all tasks.
- Example 1: Complete automation of goods and services production.

$$Y_t = A_t K_t$$

→ Then growth rate can accelerate exponentially

$$g_Y = g_A + sA_t - \delta$$

we call this a "Type I" growth explosion

Singularities

 Example 2: Complete automation in ideas production function

$$\dot{A}_t = K_t A_t^{\phi}$$

Intuitively, this idea production function acts like

$$\dot{A}_t = A_t^{1+\phi}$$

Solution:

$$A_t = \left(\frac{1}{A_0^{-\phi} - \phi t}\right)^{1/\phi}$$

• Thus we can have a true **singularity** for $\phi > 0$. A_t exceeds any finite value before date $t^* = \frac{1}{\phi A_o^{\phi}}$.

Objections to singularities

- **1** Automation limits (no $\beta_t \rightarrow 1$)
- 2 Search limits

$$\dot{A}_t = A_t^{1+\phi}$$

but $\phi < 0$ (e.g., fishing out, burden of knowledge...)

3 Natural Laws

$$Y_t = \left(\int_0^1 (a_{it}Y_{it})^{\rho}\right)^{1/\rho}$$
 where $\rho < 0$

now can have $a_{it} \to \infty$ for many tasks but no singularity (cf. Moore's Law vs. Carnot's Theorem)

 Baumol theme: growth determined not by what we are good at, but by what is essential yet hard to improve

Conclusion: A.I. in the Production of Goods and Services

- Introduced Baumol's "cost disease" insight into Zeira's model of automation
 - Automation can act like labor augmenting technology (surprise!)
 - Can get balanced growth with a constant capital share well below 100%, even with nearly full automation
- Considered effects on wage inequality and firm organization. More Al-intensive firms could:
 - Outsource a higher fraction of low-occupation tasks
 - Pay ↑ premium to low-occupation workers they keep

Conclusion: A.I. in the Ideas Production Function

- Could A.I. obviate the role of population growth in generating exponential growth?
- Discussed possibility that A.I. could generate a singularity
 - Derived conditions under which the economy can achieve infinite income in finite time
- Discussed obstacles to such events
 - Automation limits, search limits, and/or natural laws (among others)

Extra Slides

Constant Capital Share

Constant Capital Share

Switching regimes...

Switching regimes...

Capital Share of Income: Transportation Equipment

Adoption of Robots and Change in Capital Share

