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We show how to use “complementary priors” to eliminate the explaining-
away effects that make inference difficult in densely connected belief nets
that have many hidden layers. Using complementary priors, we derive a
fast, greedy algorithm that can learn deep, directed belief networks one
layer at a time, provided the top two layers form an undirected associa-
tive memory. The fast, greedy algorithm is used to initialize a slower
learning procedure that fine-tunes the weights using a contrastive ver-
sion of the wake-sleep algorithm. After fine-tuning, a network with three
hidden layers forms a very good generative model of the joint distribu-
tion of handwritten digit images and their labels. This generative model
gives better digit classification than the best discriminative learning al-
gorithms. The low-dimensional manifolds on which the digits lie are
modeled by long ravines in the free-energy landscape of the top-level
associative memory, and it is easy to explore these ravines by using the
directed connections to display what the associative memory has in mind.

1 Introduction

Learning is difficult in densely connected, directed belief nets that have
many hidden layers because it is difficult to infer the conditional distribu-
tion of the hidden activities when given a data vector. Variational methods
use simple approximations to the true conditional distribution, but the ap-
proximations may be poor, especially at the deepest hidden layer, where
the prior assumes independence. Also, variational learning still requires all
of the parameters to be learned together and this makes the learning time
scale poorly as the number of parameters increases.

We describe a model in which the top two hidden layers form an undi-
rected associative memory (see Figure 1) and the remaining hidden layers
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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.
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